FLOWORKS is a powerful additional module for FlexSim simulation software, used to analyze and optimize the logistics of bulk, fluids or gas flows in a network.

Overview

FLOWORKS is a powerful additional module for FlexSim simulation software used to accurately analyze and optimize the logistics of bulk, fluids or gas flows in a network.

FLOWORKS is a radical new approach to combine discrete events and continuous processes to an 'event driven continuous calculation'. The approach consists of modeling continuous processes as a network of flows.

FLOWORKS is used in supply chain modeling, chemical plants, food production or any other industry involving logistics of bulk, fluids or gas flows.
FLOWORKS will calculate the ‘optimal’ flow through a network.

A network can be any type of flow from a chemical plant to a production line or even electric energy. As long as the flows can be defined as linear, FLOWORKS will calculate the ‘optimal’ flow through the network.

The objects in FLOWORKS are able to define splits and joins either on ratio’s or as preferred flows. Flows can also be delayed or buffered, allowing for all kinds of complex flow and logic definitions.

FLOWORKS makes it possible to fast and accurately integrate continuous processes in a discrete model. This enables the simulation engine to simulate years of the most complex dynamic network models within seconds, by excluding any unnecessary calculations.

FLOWORKS is a unique plug-in module that can be used within the general purpose FlexSim simulator.
With FLOWORKS you can simulate an entire year of the most complex fluid networks in just seconds.

With FLOWORKS you can determine the storage capacity of your network or a single location with a click of a button.
With FLOWORKS you can optimize your investments by simulating and analyzing alternatives. The detailed 3D animation allows for detailed validation and convinces people of the design capabilities.

Simulate your investment decisions

Anticipate potential breakdowns in your network

With FLOWORKS you can optimize different supply chain strategies. It can predict the impact of uncertainties or breakdowns or even the influence of weather on your delivery reliability.
A powerful additional module for FlexSim simulation software

FlexSim is powerful yet easy-to-use software for simulation. A comprehensive and innovative simulation engine is hidden behind drag and drop controls, drop-down lists and many other intuitive features that make it accessible for anyone to experiment with a model.

All simulation models can be created to scale and are presented using 3D visuals, making it easy to watch the virtual system go through its daily operations and visually observe which elements are lacking in efficiency.

FlexSim also gives decision makers the tools to confirm their observations, with impressive statistical reporting and analysis built right into the software.
Model and analyse complex and dynamic systems fast and accurate

The FLOWORKS module perfectly aligns with the FlexSim platform, integrating all simulation tools such as dashboard reporting, process logic, experiment design and 3D visuals.

FLOWORKS objects are able to define splits and joins of flow, either on ratio's or as preferred priorities. Flows can be delayed using pipe or conveyor objects, buffered in tanks or changed through unforeseen breakdowns or planned maintenance.

All objects have a built-in triggering mechanisms to fire on reaching certain tank levels, volumes being produced or received. This allows the modeler to accurately model the complex real life system in a fast and reliable way.

Production and supply chain systems can be modeled using drag and drop, visually connecting objects and editing the parameters through user-friendly GUIs.

Elaborate control logic can be created using the graphical ‘process flow’ user interface.
FLOWORKS is a powerful additional module for FlexSim simulation software used to accurately model and analyze bulk, fluids or gas flows in a network.

FLOWORKS is a radical new approach combining discrete events and continuous processes to an ‘event driven continuous calculation’.